

6. The second and fourth terms of a geometric series are 7.2 and 5.832 respectively.

The common ratio of the series is positive.

For this series, find

- (a) the common ratio,
- (b) the first term,
- (c) the sum of the first 50 terms, giving your answer to 3 decimal places,
- (d) the difference between the sum to infinity and the sum of the first 50 terms, giving your answer to 3 decimal places.

(2)

(2)

(2)

(2)

The first term of a geometric series is 120. The sum to infinity of the series is 480.

(a) Show that the common ratio, r, is $\frac{3}{4}$.

(3)

(b) Find, to 2 decimal places, the difference between the 5th and 6th term.

(2)

(c) Calculate the sum of the first 7 terms.

(2)

The sum of the first n terms of the series is greater than 300.

(d) Calculate the smallest possible value of n.

(4)

(3)

- 10. A geometric series is $a + ar + ar^2 + ...$
 - (a) Prove that the sum of the first *n* terms of this series is given by

$$S_n = \frac{a(1-r^n)}{1-r}.$$

(b) Find

$$\sum_{k=1}^{10} 100(2^k).$$

(c) Find the sum to infinity of the geometric series

$$\frac{5}{6} + \frac{5}{18} + \frac{5}{54} + \dots$$

(3)

(d) State the condition for an infinite geometric series with common ratio r to be convergent.

(1)

The fourth term of a geometric series is 10 and the seventh term of the series is 80. For this series, find (a) the common ratio, **(2)** (b) the first term, **(2)** (c) the sum of the first 20 terms, giving your answer to the nearest whole number. **(2)**

9. The first three terms of a geometric series are (k + 4), k and (2k - 15) respectively, where k is a positive constant.

(a) Show that $k^2 - 7k - 60 = 0$.

(4)

(b) Hence show that k = 12.

(2)

(c) Find the common ratio of this series.

(2)

(d) Find the sum to infinity of this series.

(2)

6.	A car was purchased for £18 000 on 1st January. On 1st January each following year, the value of the car is 80% of its value on 1st January in the previous year.
	(a) Show that the value of the car exactly 3 years after it was purchased is £9216.
	The value of the car falls below £1000 for the first time n years after it was purchased.
	(b) Find the value of n. (3)
	An insurance company has a scheme to cover the maintenance of the car. The cost is £200 for the first year, and for every following year the cost increases by 12% so that for the 3rd year the cost of the scheme is £250.88
	(c) Find the cost of the scheme for the 5th year, giving your answer to the nearest penny (2)
	(d) Find the total cost of the insurance scheme for the first 15 years. (3)

(3)

(2)

(2)

3. The second and fifth terms of a geometric series are 750 and 6 respectively

Find

- (a) the common ratio of the series.
- (b) the first term of the series.
- (c) the sum to infinity of the series.

Q Se

1. A geometric series has first term a = 360 and common ratio $r = \frac{7}{8}$

Giving your answers to 3 significant figures where appropriate, find

(a) the 20th term of the series,

(2)

(b) the sum of the first 20 terms of the series,

(2)

(c) the sum to infinity of the series.

(2)

- 3. A company predicts a yearly profit of £120 000 in the year 2013. The company predicts that the yearly profit will rise each year by 5%. The predicted yearly profit forms a geometric sequence with common ratio 1.05
 - (a) Show that the predicted profit in the year 2016 is £138 915

(1)

(b) Find the first year in which the yearly predicted profit exceeds £200 000

(5)

(c) Find the total predicted profit for the years 2013 to 2023 inclusive, giving your answer to the nearest pound.

9. (a) A geometric series has first term a and common ratio r. Prove that the sum of the first n terms of the series is

$$\frac{a(1-r^n)}{1-r}.$$

(4)

Mr. King will be paid a salary of £35 000 in the year 2005. Mr. King's contract promises a 4% increase in salary every year, the first increase being given in 2006, so that his annual salaries form a geometric sequence.

(b) Find, to the nearest £100, Mr. King's salary in the year 2008.

(2)

Mr. King will receive a salary each year from 2005 until he retires at the end of 2024.

(c) Find, to the nearest £1000, the total amount of salary he will receive in the period from 2005 until he retires at the end of 2024.

9. A geometric series has first term a and common ratio r. The second term of the series is 4 and the sum to infinity of the series is 25.

(a) Show that $25r^2 - 25r + 4 = 0$.

(4)

(b) Find the two possible values of r.

(2)

(c) Find the corresponding two possible values of a.

(2)

(d) Show that the sum, S_n , of the first n terms of the series is given by

$$S_n = 25(1-r^n).$$

(1)

Given that r takes the larger of its two possible values,

(e) find the smallest value of n for which S_n exceeds 24.

(2)

8. A trading company made a profit of £50 000 in 2006 (Year 1).

A model for future trading predicts that profits will increase year by year in a geometric sequence with common ratio r, r > 1.

The model therefore predicts that in 2007 (Year 2) a profit of £50 000r will be made.

(a) Write down an expression for the predicted profit in Year n.

(1)

The model predicts that in Year n, the profit made will exceed £200 000.

(b) Show that $n > \frac{\log 4}{\log r} + 1$.

(3)

Using the model with r = 1.09,

(c) find the year in which the profit made will first exceed £200 000,

(2)

(d) find the total of the profits that will be made by the company over the 10 years from 2006 to 2015 inclusive, giving your answer to the nearest £10 000.

6. A geometric series has first term 5 and common ratio $\frac{4}{5}$.

Calculate

(a) the 20th term of the series, to 3 decimal places,

(2)

(b) the sum to infinity of the series.

(2)

Given that the sum to k terms of the series is greater than 24.95,

(c) show that
$$k > \frac{\log 0.002}{\log 0.8}$$
,

(4)

(d) find the smallest possible value of k.

(1)

5.	The third term of a geometric sequence is 324 and the sixth term is 96	
	(a) Show that the common ratio of the sequence is $\frac{2}{3}$	(2)
	(b) Find the first term of the sequence.	(2)
	(c) Find the sum of the first 15 terms of the sequence.	(3)
	(d) Find the sum to infinity of the sequence.	(2)
		\- .

C2 JUNE 2010 PAPER.pdf (page 22 of 28)

9.	The adult population of a town is 25,000 at the end of Vear 1
9.	The adult population of a town is 25 000 at the end of Year 1.
	A model predicts that the adult population of the town will increase by 3% each year, forming a geometric sequence.
	(a) Show that the predicted adult population at the end of Year 2 is 25750. (1)
	(b) Write down the common ratio of the geometric sequence. (1)
	The model predicts that Year N will be the first year in which the adult population of the town exceeds 40 000.
	(c) Show that
	$(N-1)\log 1.03 > \log 1.6$
	(3)
	(d) Find the value of N .
	(2)
	At the end of each year, each member of the adult population of the town will give £1 to a charity fund.
	Assuming the population model,
	(e) find the total amount that will be given to the charity fund for the 10 years from the end of Year 1 to the end of Year 10, giving your answer to the nearest £1000.(3)

C2 JUNE 2012 PAPER.pdf (page 26 of 28)

- 9. A geometric series is $a + ar + ar^2 + ...$
 - (a) Prove that the sum of the first n terms of this series is given by

$$S_n = \frac{a(1-r^n)}{1-r} \tag{4}$$

The third and fifth terms of a geometric series are 5.4 and 1.944 respectively and all the terms in the series are positive.

For this series find,

(b) the common ratio,

(2)

(c) the first term,

(2)

(d) the sum to infinity.

Q Search

blank

- The first three terms of a geometric series are 4p, (3p + 15) and (5p + 20) respectively, where p is a **positive** constant.
 - (a) Show that $11p^2 10p 225 = 0$

(4)

(b) Hence show that p = 5

(2)

(c) Find the common ratio of this series.

(2)

(d) Find the sum of the first ten terms of the series, giving your answer to the nearest integer.

A geometric series has first term a, where $a \neq 0$, and common ratio r. The sum to infinity of this series is 6 times the first term of the series.

(a) Show that $r = \frac{5}{6}$

(2)

Given that the fourth term of this series is 62.5

(b) find the value of a,

(2)

(c) find the difference between the sum to infinity and the sum of the first 30 terms, giving your answer to 3 significant figures.

5. (i) All the terms of a geometric series are positive. The sum of the first two terms is 34 and the sum to infinity is 162.

Find

- (a) the common ratio,
 - (4)
- (b) the first term.

(2)

(ii) A different geometric series has a first term of 42 and a common ratio of $\frac{6}{7}$.

Find the smallest value of n for which the sum of the first n terms of the series exceeds 290.

C12 JAN 2015 INTERNATIONAL IAL WRITTEN MS.pdf (page 12 of 17)

Q Searc

- 12. A business is expected to have a yearly profit of £275 000 for the year 2016. The profit is expected to increase by 10% per year, so that the expected yearly profits form a geometric sequence with common ratio 1.1
 - (a) Show that the difference between the expected profit for the year 2020 and the expected profit for the year 2021 is £40 300 to the nearest hundred pounds.

(3)

- (b) Find the first year for which the expected yearly profit is more than one million pounds.
 - (4)
- (c) Find the total expected profits for the years 2016 to 2026 inclusive, giving your answer to the nearest hundred pounds.

U12 1

T Hydiod/Midivialitid Fator.com

January ZUTU (IAL)

9. The resident population of a city is 130 000 at the end of Year 1

A model predicts that the resident population of the city will increase by 2% each year, with the populations at the end of each year forming a geometric sequence.

- (a) Show that the predicted resident population at the end of Year 2 is 132 600
- (b) Write down the value of the common ratio of the geometric sequence.

The model predicts that Year N will be the first year which will end with the resident population of the city exceeding 260 000

(c) Show that

$$N > \frac{\log_{10} 2}{\log_{10} 1.02} + 1$$

(1)

(1)

(3)

(ii) Given that
$$\sum_{r=0}^{\infty} \frac{a}{4^r} = 16$$
, find the value of the constant a .

Q S

- 7. A geometric series has first term 1200. Its sum to infinity is 960.
 - (a) Show that the common ratio of the series is $-\frac{1}{4}$.

(3)

(a) Find, to 3 decimal places, the difference between the ninth and tenth terms of the series.

(3)

(c) Write down an expression for the sum of the first n terms of the series.

(2)

Given that n is odd,

(d) prove that the sum of the first n terms of the series is

$$960(1 + 0.25^n)$$
.